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OPTIMAL STRUCTURAL DESIGN FOR GIVEN DEFLECTION IN
PRESENCE OF BODY FORCES+t

JENN-MING CHERNY

Brown University

Abstract—Optimal design of elastic structures for given deflection is discussed under the assumption that some
of the loads acting on the structure depend on the design (e.g. weight or inertia forces of elements of structure).
A necessary and sufficient condition for local optimality is established. and its use is illustrated by examples.

1. INTRODUCTION

IN MosT of the published work on optimal elastic design for prescribed deflection, body
forces, such as gravity, that are proportional to the mass of the element of the structure and
hence depend on the as yet unknown design, have been neglected. Icerman [1], however,
treated optimal design of sandwich beams of fixed core dimensions for given amplitude of
deflection under excitation by a concentrated load, theintensity of which varies harmonically
in time. Barnett {2] discussed optimal design of a uniformly accelerating cantilever beam for
given tip deflection. His analysis, however, is based on the optimality condition derived in
[3] under the assumption that the loads do not depend on the design. The inertia loads of the
considered problem clearly violate this assumption.

The present paper is concerned with optimal design of elastic structures for given
deflection when some of the loads depend on the design. For the sake of brevity, the general
discussion is restricted to beams, but a rod under centrifugal loads is treated as an example.
A necessary and sufficient condition for local optimality is established in Section 2, and
examples illustrating the use of this condition are discussed in Sections 3-5, with particular
attention to numerical procedures.

2. OPTIMALITY CONDITION

Consider a statically determinate or indeterminate beam with the continuously varying
bending stiffness s(x), where x denotes distance measured along the beam. Let u(x} and
ii(x) be the actual deflections of this beam under the alternative distributed loads p(x) and
p(x). and by u*(x) and #*(x) independent kinematically admissible deflections of the beam.
Shield and Prager [4] introduced the concept of the mutual potential energy Ulu*, i*; s] of
the beam for the loads p, p and the kinematically admissible deflections u*, #*:

1
Ulu*, a*;s] = E{J- su*"u*" dx — Jpﬁ* dx — pu* dx} , (2.1)
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where the prime denotes differentiation with respect to x. {Note that this energy reduces to
the conventional potential energy when p = pand &* = v*) For u* = vand u* = w use of
the principle of virtual work furnishes

-~ Py

! 17 1
; PP I L _ — - = . Rl
Ulwoi;s] = ’J su'u"dx = ’J ptidx = 5 pudx. (2.2
According to the principle of stationary mutual potential energy established in [4]. the
energy Ulu*, 4*;s] is stationary in the neighborhood of u* = 1. @* = 4. Indeed. variatuon
of U with respect to ii* yields

R

0l = ;J [(su*")"— pJou* dx. (2.3
which vanishes for u* = u. Similarly. the variation of U’ with respect to u* vanishes for
u* = .

When the principle of mutual potential energy is applied to optimal design for the given
deflection u(x,) = u, at the cross section x,, the load p is chosen as a unit load at x,,. which
may be regarded as the limit, for ¢ — O, of a uniformly distributed load of intensity 1.(2z)
acting on the segment x, —¢ < x < x,+¢ According to the last term in (2.2), the stationary
value of the mutual potential energy then is —u,/2.

Let s and s* = s+ ds denote the continuously varying bending stitfness of neighboring
designs that satisfy the constraint on the deflection at x,. Allowing the load p(x) to depend
on the design. we set

plx) = g(x)+r(x:s), Prx) = g+ r(x:s*), (2.4

and denote by u. @ the deflections of the design s under the loads p. p and by u* = v+ du.
u* = i+ ou the deflections of the design s* under the loads p*. p. Because

UXp) = u*xy) = U (2.54

it follows from (2.2) applied to the designs 5 and s* that

UTu*. a*:s* = UTu iz s 12.6)
= - N

On the other hand. the detlections w. 4 are Kinematically admissible for the design s* and
neighboring to its actual deflections under the loads p*. jp. The principle of stationars
mutual potential energy applied to the design s* therefore furnishes

Ulu i s* = Ul % s*) 2.7
Substitution of (2.7} into (2.6) vields

Cluciens* = Ul sl = 6 2.8
In view of the definition (2.1) of the mutual potential energy. the expressions (2.41 for the
loads. and the constraint (2.3). equation (2.8) is equivalent to

(5% — s dx - ’ (r* —riidy = 0. 129y
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With s* = s+ds and r* = r+7ds. where the dot denotes differentiation with respect to s.
we finally cast (2.9) into the form

J(u"ﬁ"—f‘ﬁ)és dx = 0. (2.10)

Writing the weight B of the design s as

W= (W(S)d.\‘. (2.11)
we conclude from (2.10) that
oW = (\&«Ss dx =0 {2.12)
if
(u"u” —Fi)w = const. (2.13)

The condition (2.13) thus is sufficient for the weight of the beam to be stationary with respect
to design variations (in the neighborhood of the design s) that satisfy the deflection constraint
at xo. In other words, (2.13) i1s a sufficient condition for local optimality.

That this condition is also necessary for local optimality may be shown as follows.
Denoting the bending moments of the design s under the loads p. p by M, M, we write the
constraint on the deflection at x, as

) E—
fEMM dx—ug €0, (2.14)
and form the functional
_ |
FIM,M:s] = f\\‘dX+).{f;A’1AMdX—UO}‘ (2.15)

where the first integral represents the weight of the beam [see (2.11)) and /4 is a Lagrangian
multiplier. Since M and M depend on the design, variation of the design and use of M = su".
M = sii” furnish

oF = f (w—Au"u")os dx +/".f WM dx+ ( it’'oM dx. (2.16)

Y
By the principle of virtual work, the last two integrals in (2.16) equal { uép dx and | @dp dx,
respectively. The first of these integrals vanishes because the load p is not subject to variation.

and the second integral may be written as [ #ds dx. Since the variation ds may be treated as
arbitrary, the relation

W—Au'u"~ra) = 0, (2.17)

which is equivalent to (2.13), is a necessary condition for local optimality. Note that 4 in
(2.17), and hence the constant in (2.13), must be positive if {2.14) is to be fulfilled as equality.
We shall carry the analysis a little further for the case that

w o= o4 fsltmm (2.18)
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where « f. m are constants, and 0 < m < [. If the positive factor (I —anffon in
W= [{(1—mB:mis't ™™ is absorbed in the positive constant on the right-hand side of
(2.13), this optimality condition becomes

Jmim

(@ —Fayst = const. {= ¢~ say). (2,19

Multiplying (2.19) by s~ and simplifving, we obtain
Ay = (MM — s Fapm. (2244

where M = su’, M = si” are the bending moments of the design s under the loads p.
With the use of {2.20}, the deflection constraint may be written as

o = | (MFs)dx = clmj MMM~ ) ™ dx. 2.21

«

Elimination of ¢*™ between (2.20) and (2.21) finally yields the relation

upstx) = [MOMx)— s2aR ()™ | MEOMEMEM(E) - sHOMDE)] "™ de, {2.22)

o

which is a nonlinear integral equation for the bending stiffness s of the optimal design.

In the important case that w = x + ffs. we have m = L and (2.22)y may be cast into 4 form
more suitable for numerical work. Squaring (2.22) and bringing the term in s°(x) on the
right to the other side. we find

sty = TMUGMNOT 72+ Foamxy ul] ™8 {2.23

where [ is the integral in (2.22) evaluated for m = &,

3. CANTILEVER BEAM WITH CONTINUQUSLY VARYING STIFFNESS

Consider a sandwich beam with a light core of fixed breadth B and height 2H. and
wdentical cover sheets of continuously varying thickness 7:2. The beam is to be free at the
end x = 0 and builtin at the end x = {: 1t is to be designed for minimum weight of the cover
sheets under the constraint that this weight and a given concentrated load Q at x = 0
should produce the prescribed deflection w0 = u,.

If the specific weight of the cover sheets is denoted by ;. we have r = v Tand s = EH"T.
where E is Young's modulus for the cover sheets. Accordingly.

t

Furthermore,
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and

Introducing the dimensionless quantitics
Vo= X, n=Zl S = uys (QF) = I AEHu,). (3.4)
we write (2.23)1n the form

2 5 S —mdy)?

Sy = = T (3.5
W= U724 ] Iptp = yyiSop) dn ) (3-3)
where
! V24 uy 5 S —n) d
:f uy f Sipyr=mdn B a6
o ¥y i St =)y dn— uS0 [T Ity — 30 Sty)] dn

For u = (. equations (3.5) and (3.6) furnish the optimal stiffness
Solv) = ¥/2, (3.7)

which corresponds to the sole action of the concentrated load Q. For sufficiently small pu.
the optimal bending stiffness may be obtained from (3.5) by a perturbation scheme starting
with (3.7). One finds

Si) = S+ uag(—1+3r=0%) (38)

to within higher order terms in x. For greater values of u. the optimal bending stiffness may
be found by the following iterative scheme. Starting from (3.7} or (3.8), we compute S, ()}
from (3.5) by using S,(1) on the right side of this equation and in (3.6). The integrals in (3.5)
and (3.6) are, of course, evaluated by numerical quadrature. The procedure is repeated until
two successive results agree within the desired number of significant digits.

The procedure just described was carried out for u = 1,2 and 3. The values of dimension-
less stiffness {3.4) could be determined to five significant digitsin Siterations. Thecorrespond-
ing optimal designs are presented in Fig. 1. It was also found that the approximate solution
{3.8) agrees with the iteration result within 3 significant figures for y < 1.

4. CANTILEVER BEAM WITH SEGMENTWISE CONSTANT STIFFNESS

While the optimality condition (2.19) was obtained for a beam of continuously varying
stiffness, the same procedure may be applied to a beam of segmentwise constant stiffness.
Consider a beam of n segments, and let /; and s; be length and bending stiffness of the ith
segment and x; the distance measured along the axis of this segment. Deflections and
bending moments of this segment in the two states of loading will be denoted by wu,{x;).
#(x;) and Mgx;). M{x) and r{x;:s;) will be used for the part of distributed loads that
depends on the stiffness. An analog to (2.22) for the present case is readily found as

UgS; = I;"ZI;’"J‘M‘,{xj)ﬁj{xj}dxj, 4.1
J
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Fic. | Optimal designs of cantilever beam with contimuously varying suifness.

where
I . . -

| = | l TM (X OM(x ) = TRy dy 1o

1

In the important case that m = s 1) may be cust in the form

1 A - {_‘ X 1 N s
tgo, = | - } ,\Ift,\',x.\;(g{x{;d.\],’§ { 7+ = i FANaEIx Ay . .3
[ J ! ITRTA »

where [ is the sum in (4.1 evaluated for ;= L [t should be noted that for i — v 4 fiund
(+. 31 respecuvely reduce to (222 and (2230

As u numerical example. the cantlever beam in Section 3 is assumed 1o consist ol twe
segments with y = 3, for/, < v, < Ouand s = s, forl, = v. = { Accordinglv. 1 3. Tibecome

AN P
EH- iH-
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Furthermore.
M {x,) = QX + by
= X '
H H 1 :EH‘, 1
. 51y rS2 2
Ma(x,) = Q.\z-t-:EH 1 (X5 11)+~3EH‘(.\3—11) .
q
Mi(xy) = x, (4.3)
Maix.) = x,
and
1 s
iy = (=X, 72+ x, +——[{i-1 HAFIN+F P~ - x)))
6s, 6s,
1 4.6
172(,\'2) = (1—~X3)2(21+Xz).
6s,
Introducing the dimensionless quantities
v=xl A=l S = usQP),
- =8,/S,, u = 2PAEH u,), (47
we obtain. from {4.3), the following two equations for the unknowns - and S, :
(1444 A2+ uC (A2 + uC oAz~ Ca(4) = 0, 4.8)
S, =[P+ =21~ uCd]™ ", 4.9)
where
Cih) = H2@+ A+ 2[4+ (1= (1 =23 = (1 + A+ A3+ (1= 23+ )]
Co(5) = L3~ )4+ 4+ 22,
(4.10)

Co(i) = 241 =K [34% (1 — PG+ AL
Cal2) = 3325+ (1 = APB+ A+ 241 — 24+ + 22

With the positive root z obtained from (4.8}, S, is given by (49} and S, by S,/z. For given
u, the values of §; and S, so obtained also depend on 4 which must be between 0 and 1.
The calculation was carried out for g = 0, 1, 2 and 3. and the corresponding optimal designs
are presented in Fig. 2 as functions of 4. For each g, there exists a value 4 = J_ that yields
the minimum weight of the optimal beam. It is noted that for the values of y considered
here, the values of /,_ are between 0.424 and 0.442 where the former value corresponds to
i = 0 and the latter to y = 3.

5. ROTATING ROD

To illustrate an optimal design in which the body force is essential, we consider a rod of
length that carries a concentrated mass @ at x = [ and rotates at constant angular velocity @
about an axis through x = 0 that is perpendicular to the rod. The rod is to be designed for
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FiG. 2. Optimal designs of cantilever beam with segmentwise constant stiffness.

minimum weight under the constraint that the axial displacement at x = [ is not to exceed
the given value u,,. The optimal design is given by (2.22) where s is now axial stiffness. M and
M are. respectively. the axial forces due to the inertia loads and a unit axial load applied at
x =/ and u and @ are the corresponding axial displacements. Since the weight per unit
length of the rod is proportional to the axial stiffness. we shall set m = 4in12.22)and hence

obtain (2.23).

If the specific mass of the rod is denoted by p, we have » = pi"x4and s = EA. where 4

15 the cross-sectional area of the rod. Accordingly.

Furthermore.

and

Mx) = Qles” + ‘
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Introducing the dimensionless quantities
=x/A, =38l  S=ussHQuw?). = pw’P/Eu,), (5.4)
we write (2.23) in the form

(E+u [} Sty dy)?

S = > 5.5
W fo s~ o dnlt 5
where
! 1+u(!Sinmd

_ f pf; Stnm dn ar. (5.6)

L+p 3 St dip— puyS*(v) o S~ 1o dn)?

For u = 0. equations (5.5) and (5.6) furnish the optimal stiffness
Soly) =1 (5.7)

which corresponds to the sole presence of the concentrated mass Q, the mass of the rod
being neglected. For sufficiently small u. the optimal axial stiffness may be obtained from
(5.5) by a perturbation scheme. One finds

S0 = 1+ (7 9y?) (5.8)

to within higher order terms in y. For greater values of u, the optimal axial stiffness may be
found from (5.5) by an iterative scheme similar to that of Section 3. However, to assure rapid
convergence, (5.8) rather than (5.7) is preferred for starting the iteration procedure.

Eq.(5.5)
EQ.{(5.8) m—=——~—

sug /(Qw?d?)

o] 0.5 1.0

x /.4

F1G. 3. Optimal designs of rotating rod.
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The iteration procedure was carried out for ¢ = 0-1, 0-5 and 1. The axial stiffness could
be determined to five significant digits in 6 iterations starting {rom (3.8) while the same
accuracy required 10 iterations starting {rom (3.7). The corresponding optimal designs are
represented in Fig. 3. For comparison the approximate solutions obtained from (3.8 ure
drawn m Fig. 3 by dashed lines. As 1s to be expected m the present case. the optimal designs
are more sensitive to the value of . which is o dimensionless parameter indicating the
relative importance of the body force. than were the static cases in Sections 3 and 4

dcknowledgmen:  The author is indebted to Professur W. Prager for advice tn the course of this work

REFERENCES

‘11 L. J. [cermaN, Optimal structural design for given dynamic deflection. Inr. J. Solids Struct. 5. 473490 {1969

221 R. L. BARNETT, Minimum deflection design of a uniformly accelerating cantilever beam. J. uppl. Mech 30,
466467 11963).

137 R. L. Bar~eTT, Mimimum weight design ot beams for deflection. J. Engng Mech. Dic. 4m. Soc. cir. Engre 87,
T3-109 (19611

47 R.T.SniELb and W PraGER. Optimal structural design tor given deflection. £, ungew . Math. Phys to appear

{Received 19 Junuury 1970)

AdcrpakT—MCCIaAveTCa ONTHMAIBHBIH DACHST MIPYIHN KOHCTPMKUHH LI JAJAHHOIO Oporuda. npn
APEONOAOKEHHH, 4TO HEKOTOPLIE M3 HATPMIOK. ICHUTBVIOHIX HA KOHCTPYKUMKOY. ZABHCAT O NP ChIa
KOHCTPYKUMH (HAMPUMEP BEC H.IM HHEPUOOHHLIC Wbl RICMEHTOB KOHCTPYRUMI]. Y CTAHAB D B T0H
HEOBX0AMMOE M JAOCTATOMHOE YCIIOBHA 15 JOKLTHHO ONTHMAILHOCTH B UTIOCTDHPYETCH TPHMEPONT (1
HCIOTbI0BAHHE .



